Primary Mitochondrial Disease
Pizzamiglio C, Stefanetti RJ, McFarland R, Thomas N, Ransley G, Hugerth M, Grönberg A, Serrano SS, Elmér E, Hanna MG, Hansson MJ, Gorman GS, Pitceathly RDS.
Optimizing rare disorder trials: a phase 1a/1b randomized study of KL1333 in adults with mitochondrial disease. Brain. 2025 Jan 7;148(1):39-46. doi: 10.1093/brain/awae308. PMID: 39657714; PMCID: PMC11706290.
Åsander Frostner E, Simón Serrano S, Chamkha I, Donnelly E, Elmér E, Hansson MJ
Towards a treatment for mitochondrial disease: current compounds in clinical development. Bioenerg Commun 2022.4. https://doi.org/10.26124/bec:2022-0004.
Chinnery PF.
Mitochondrial Disorders Overview. 2000 Jun 8 [Updated 2014 Aug 14]. In: Adam MP, Ardinger HH, Pagon RA, et al., editors. GeneReviews® [Internet]. Seattle (WA): University of Washington, Seattle; 1993-2018. Available from: https://www.ncbi.nlm.nih.gov/books/NBK1224/.
Russell OM, Gorman GS, Lightowlers RN, Turnbull DM.
Mitochondrial Diseases: Hope for the Future. Cell. 2020 Apr 2;181(1):168-188. doi: 10.1016/j.cell.2020.02.051. Epub 2020 Mar 26. PMID: 32220313.
Gorman GS et al.
Prevalence of nuclear and mitochondrial DNA mutations related to adult mitochondrial disease. Ann Neurol. 2015;77(5):753-759. doi:10.1002/ana.24362 Epub 2015 Mar 28. PMID: 25652200; PMCID: PMC4737121.
McElroy GS et al.
NAD+ Regeneration Rescues Lifespan, but Not Ataxia, in a Mouse Model of Brain Mitochondrial Complex I Dysfunction. Cell Metab. 2020 Aug 4;32(2):301-308.e6. doi: 10.1016/j.cmet.2020.06.003. Epub 2020 Jun 22. PMID: 32574562; PMCID: PMC7415718.
Pirinen E et al.
Niacin Cures Systemic NAD+ Deficiency and Improves Muscle Performance in Adult-Onset Mitochondrial Myopathy. Cell Metab. 2020 Jun 2;31(6):1078-1090.e5. doi: 10.1016/j.cmet.2020.04.008. Epub 2020 May 7. Erratum in: Cell Metab. 2020 Jul 7;32(1):144. PMID: 32386566.
Titov DV, Cracan V, Goodman RP, Peng J, Grabarek Z, Mootha VK.
Complementation of mitochondrial electron transport chain by manipulation of the NAD+/NADH ratio. Science. 2016 Apr 8;352(6282):231-5. doi: 10.1126/science.aad4017. Epub 2016 Apr 7. PMID: 27124460; PMCID: PMC4850741.
Seo KS et al.
KL1333, a Novel NAD+ Modulator, Improves Energy Metabolism and Mitochondrial Dysfunction in MELAS Fibroblasts. Front Neurol. 2018 Jul 5;9:552. doi: 10.3389/fneur.2018.00552. eCollection 2018. PubMed PMID: 30026729; PubMed Central PMCID: PMC6041391.
Ehinger JK et al.
Cell-permeable succinate prodrugs bypass mitochondrial complex I deficiency. Nat Commun. 2016 Aug 9;7:12317. doi: 10.1038/ncomms12317. PubMed PMID: 27502960; PubMed Central PMCID: PMC4980488.
Bakare AB, Rao RR, Iyer S.
Cell-Permeable Succinate Increases Mitochondrial Membrane Potential and Glycolysis in Leigh Syndrome Patient Fibroblasts. Cells. 2021 Aug 31;10(9):2255. doi: 10.3390/cells10092255. PMID: 34571904; PMCID: PMC8470843.
Thorburn DR, Rahman J, Rahman S.
Mitochondrial DNA-Associated Leigh Syndrome and NARP. 2003 Oct 30 [Updated 2017 Sep 28]. In: Adam MP, Ardinger HH, Pagon RA, et al., editors. GeneReviews® [Internet]. Seattle (WA): University of Washington, Seattle; 1993-2018. Available from: https://www.ncbi.nlm.nih.gov/books/NBK1173/.
Traumatic Brain Injury
Hansson MJ, Elmér E.
Cyclosporine as Therapy for Traumatic Brain Injury. Neurotherapeutics. 2023 Aug 10. doi: 10.1007/s13311-023-01414-z. Epub ahead of print. PMID: 37561274.
Kelsen J et al.
Copenhagen Head Injury Ciclosporin (CHIC) study: A phase IIa safety, pharmacokinetics and biomarker study of ciclosporin in severe head injury patients. J Neurotrauma. 2019 Jun 18. doi: 10.1089/neu.2018.6369. [Epub ahead of print] PMID: 31210099.
Karlsson M et al.
Neuroprotective Effects of Cyclosporine in a Porcine Pre-Clinical Trial of Focal Traumatic Brain Injury. J Neurotrauma. 2018 Jul 24. doi: 10.1089/neu.2018.5706. [Epub ahead of print] PMID: 29929438.
Maas AIR et al.
Traumatic brain injury: integrated approaches to improve prevention, clinical care, and research. Lancet Neurol. 2017 Dec;16(12):987-1048. doi: 10.1016/S1474-4422(17)30371-X. Epub 2017 Nov 6. Review. PubMed PMID: 29122524.
Cyclophilin inhibitors
Simón Serrano S et al.
Synergistic Effects of Sanglifehrin-Based Cyclophilin Inhibitor NV651 with Cisplatin in Hepatocellular Carcinoma. Cancers (Basel). 2022 Sep 20;14(19):4553. doi: 10.3390/cancers14194553. PMID: 36230472; PMCID: PMC9559492.
Simón Serrano S et al.
Novel Cyclophilin Inhibitor Decreases Cell Proliferation and Tumor Growth in Models of Hepatocellular Carcinoma. Cancers (Basel). 2021 Jun 18;13(12):3041. doi: 10.3390/cancers13123041. PMID: 34207224; PMCID: PMC8234462.
Simón Serrano S et al.
Evaluation of NV556, a Novel Cyclophilin Inhibitor, as a Potential Antifibrotic Compound for Liver Fibrosis. Cells. 2019 Nov 8;8(11). pii: E1409. doi: 10.3390/cells8111409. PMID: 31717385.
Kuo J et al.
Cyclophilin Inhibitor NV556 Reduces Fibrosis and Hepatocellular Carcinoma Development in Mice With Non-Alcoholic Steatohepatitis. Front Pharmacol. 2019 Sep 26;10:1129. doi: 10.3389/fphar.2019.01129. eCollection 2019. PMID: 31611801.
Other
Piel S et al.
Succinate prodrugs as treatment for acute metabolic crisis during fluoroacetate intoxication in the rat. Mol Cell Biochem. 2022 Oct 25. doi: 10.1007/s11010-022-04589-9. Epub ahead of print. PMID: 36282352.